Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617208

RESUMO

Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.

2.
Laryngoscope ; 134(1): 287-296, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37458368

RESUMO

OBJECTIVE: Subglottic stenosis (SGS) may result from prolonged intubation where fibrotic scar tissue narrows the airway. The scar forms by differentiated myofibroblasts secreting excessive extracellular matrix (ECM). TGF-ß1 is widely accepted as a regulator of fibrosis; however, it is unclear how biomechanical pathways co-regulate fibrosis. Therefore, we phenotyped fibroblasts from pediatric patients with SGS to explore how key signaling pathways, TGF-ß and Hippo, impact scarring and assess the impact of inhibiting these pathways with potential therapeutic small molecules SB525334 and DRD1 agonist dihydrexidine hydrochloride (DHX). METHODS: Laryngeal fibroblasts isolated from subglottic as well as distal control biopsies of patients with evolving and maturing subglottic stenosis were assessed by α-smooth muscle actin immunostaining and gene expression for α-SMA, FN, HGF, and CTGF markers. TGF-ß and Hippo signaling pathways were modulated during TGF-ß1-induced fibrosis using the inhibitor SB525334 or DHX and analyzed by RT-qPCR for differential gene expression and atomic force microscopy for ECM stiffness. RESULTS: SGS fibroblasts exhibited higher α-SMA staining and greater inflammatory cytokine and fibrotic marker expression upon TGF-ß1 stimulation (p < 0.05). SB525334 restored levels to baseline by reducing SMAD2/3 nuclear translocation (p < 0.0001) and pro-fibrotic gene expression (p < 0.05). ECM stiffness of stenotic fibroblasts was greater than healthy fibroblasts and was restored to baseline by Hippo pathway modulation using SB525334 and DHX (p < 0.01). CONCLUSION: We demonstrate that distinct fibroblast phenotypes from diseased and healthy regions of pediatric SGS patients respond differently to TGF-ß1 stimulation, and SB525334 has the superior potential for subglottic stenosis treatment by simultaneously modulating TGF-ß and Hippo signaling pathways. LEVEL OF EVIDENCE: NA Laryngoscope, 134:287-296, 2024.


Assuntos
Cicatriz , Fator de Crescimento Transformador beta1 , Humanos , Criança , Fator de Crescimento Transformador beta1/metabolismo , Cicatriz/patologia , Constrição Patológica/patologia , Fibrose , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas
3.
Laryngoscope ; 134(2): 807-814, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37658705

RESUMO

OBJECTIVE: Severe subglottic stenosis develops as a response to intubation in 1% of the >200,000 neonatal intensive care unit infants per year and may require laryngotracheal reconstruction (LTR) with autologous hyaline cartilage. Although effective, LTR is limited by comorbidities, severity of stenosis, and graft integration. In children, there is a significant incidence of restenosis requiring revision surgery. Tissue engineering has been proposed to develop alterative grafting options to improve outcomes and eliminate donor-site morbidity. Our objective is to engineer a decellularized, channel-laden xenogeneic cartilage graft, that we deployed in a proof-of-concept, neonatal porcine LTR model. METHODS: Meniscal porcine cartilage was freeze-thawed and washed with pepsin/elastase to decellularize and create microchannels. A 6 × 10-mm decellularized cartilage graft was then implanted in 4 infant pigs in an anterior cricoid split. Airway patency and host response were monitored endoscopically until sacrifice at 12 weeks, when the construct phenotype, cricoid expansion, mechanics, and histomorphometry were evaluated. RESULTS: The selective digestion of meniscal components yielded decellularized cartilage with cell-size channels. After LTR with decellularized meniscus, neonatal pigs were monitored via periodic endoscopy observing re-epithelization, integration, and neocartilage formation. At 12 weeks, the graft appeared integrated and exhibited airway expansion of 4 mm in micro-CT and endoscopy. Micro-CT revealed a larger lumen compared with age-matched controls. Finally, histology showed significant neocartilage formation. CONCLUSION: Our neonatal porcine LTR model with a decellularized cartilage graft is a novel approach to tissue engineered pediatric LTR. This pilot study sets the stage for "off-the-shelf" graft procurement and future optimization of MEND for LTR. LEVEL OF EVIDENCE: NA Laryngoscope, 134:807-814, 2024.


Assuntos
Laringoestenose , Procedimentos de Cirurgia Plástica , Lactente , Recém-Nascido , Criança , Humanos , Animais , Suínos , Projetos Piloto , Constrição Patológica/cirurgia , Cartilagem/transplante , Laringoestenose/cirurgia
4.
Dev Cell ; 59(2): 211-227.e5, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38141609

RESUMO

Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transativadores , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , 60489 , Desenvolvimento Ósseo , Morfogênese , Osteoblastos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
5.
Cell Stem Cell ; 30(12): 1563-1565, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065065

RESUMO

The creation of an engineered trachea with robust phenotype and sufficient mechanical properties for clinical application remains a challenge. In their work, Tang et al.1 propose a stacked approach of alternating cartilaginous and fibrous rings to form a tracheal segment, which integrated and retain patency in rabbits for 8 weeks.


Assuntos
Engenharia Tecidual , Traqueia , Animais , Coelhos
6.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38105967

RESUMO

Trachea defects that required surgical interventions are increasing in number in the recent years, especially for pediatric patients. However, current gold standards, such as biological grafts and synthetic prothesis, do not represent an effective solution, due to the lack of mimicry and regeneration capability. Bioprinting is a cutting-edge approach for the fabrication of biomimetic scaffold to empower tissue engineering toward trachea replacement. In this study, we developed a self-folding gelatin-based bilayer scaffold for trachea engineering, exploiting the 4D bioprinting approach, namely the fabrication of dynamic scaffolds, able to shape morph in a predefined way after the application of an environmental stimulus. Indeed, starting form a 2D flat position, upon hydration, this scaffold forms a closed tubular structure. An analytical model, based on Timoshenko's beam thermostats, was developed, and validated to predict the radius of curvature of the scaffold according to the material properties and the scaffold geometry. The 4D bioprinted structure was tested with airway fibroblast, lung endothelial cells and ear chondral progenitor cells (eCPCs) toward the development of a tissue engineered trachea. Cells were seeded on the scaffold in its initial flat position, maintained their position after the scaffold actuation and proliferated over or inside it. The ability of eCPCs to differentiate towards mature cartialge was evaluated. Interestingly, real-time PCR revealed that differentiating eCPCs on the 4D bioprinted scaffold promote healthy cartilage formation, if compared with eCPCs cultured on 2D static scaffold. Thus, eCPCs can perceive scaffold folding and its final curvature and to react to it, towards the formation of mature cartilage for the airway.

7.
Cell Mol Bioeng ; 16(4): 369-381, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37811005

RESUMO

Introduction: Pediatric subglottic stenosis (SGS) results from prolonged intubation where scar tissue leads to airway narrowing that requires invasive surgery. We have recently discovered that modulating the laryngotracheal microbiome can prevent SGS. Herein, we show how our patent-pending antimicrobial peptide-eluting endotracheal tube (AMP-ET) effectively modulates the local airway microbiota resulting in reduced inflammation and stenosis resolution. Materials and Methods: We fabricated mouse-sized ETs coated with a polymeric AMP-eluting layer, quantified AMP release over 10 days, and validated bactericidal activity for both planktonic and biofilm-resident bacteria against Staphylococcus aureus and Pseudomonas aeruginosa. Ex vivo testing: we inserted AMP-ETs and ET controls into excised laryngotracheal complexes (LTCs) of C57BL/6 mice and assessed biofilm formation after 24 h. In vivo testing: AMP-ETs and ET controls were inserted in sham or SGS-induced LTCs, which were then implanted subcutaneously in receptor mice, and assessed for immune response and SGS severity after 7 days. Results: We achieved reproducible, linear AMP release at 1.16 µg/day resulting in strong bacterial inhibition in vitro and ex vivo. In vivo, SGS-induced LTCs exhibited a thickened scar tissue typical of stenosis, while the use of AMP-ETs abrogated stenosis. Notably, SGS airways exhibited high infiltration of T cells and macrophages, which was reversed with AMP-ET treatment. This suggests that by modulating the microbiome, AMP-ETs reduce macrophage activation and antigen specific T cell responses resolving stenosis progression. Conclusion: We developed an AMP-ET platform that reduces T cell and macrophage responses and reduces SGS in vivo via airway microbiome modulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00769-9.

8.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36711590

RESUMO

Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality. Here, we show that embryonic YAP/TAZ signaling couples vessel-associated osteoblast precursor mobilization to angiogenesis in developing long bones. Osterix-conditional YAP/TAZ deletion impaired endochondral ossification in the primary ossification center but not intramembranous osteogenesis in the bone collar. Single-cell RNA sequencing revealed YAP/TAZ regulation of the angiogenic chemokine, Cxcl12, which was expressed uniquely in vessel-associated osteoblast precursors. YAP/TAZ signaling spatially coupled osteoblast precursors to blood vessels and regulated vascular morphogenesis and vessel barrier function. Further, YAP/TAZ signaling regulated vascular loop morphogenesis at the chondro-osseous junction to control hypertrophic growth plate remodeling. In human cells, mesenchymal stromal cell co-culture promoted 3D vascular network formation, which was impaired by stromal cell YAP/TAZ depletion, but rescued by recombinant CXCL12 treatment. Lastly, YAP and TAZ mediated mechanotransduction for load-induced osteogenesis in embryonic bone.

9.
Cells Tissues Organs ; 211(6): 670-688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34261061

RESUMO

Articular cartilage is crucially influenced by loading during development, health, and disease. However, our knowledge of the mechanical conditions that promote engineered cartilage maturation or tissue repair is still incomplete. Current in vitro models that allow precise control of the local mechanical environment have been dramatically limited by very low throughput, usually just a few specimens per experiment. To overcome this constraint, we have developed a new device for the high throughput compressive loading of tissue constructs: the High Throughput Mechanical Activator for Cartilage Engineering (HiT-MACE), which allows the mechanoactivation of 6 times more samples than current technologies. With HiT-MACE we were able to apply cyclic loads in the physiological (e.g., equivalent to walking and normal daily activity) and supra-physiological range (e.g., injurious impacts or extensive overloading) to up to 24 samples in one single run. In this report, we compared the early response of cartilage to physiological and supra-physiological mechanical loading to the response to IL-1ß exposure, a common but rudimentary in vitro model of cartilage osteoarthritis. Physiological loading rapidly upregulated gene expression of anabolic markers along the TGF-ß1 pathway. Notably, TGF-ß1 or serum was not included in the medium. Supra-physiological loading caused a mild catabolic response while IL-1ß exposure drove a rapid anabolic shift. This aligns well with recent findings suggesting that overloading is a more realistic and biomimetic model of cartilage degeneration. Taken together, these findings showed that the application of HiT-MACE allowed the use of larger number of samples to generate higher volume of data to effectively explore cartilage mechanobiology, which will enable the design of more effective repair and rehabilitation strategies for degenerative cartilage pathologies.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Condrócitos/metabolismo , Engenharia Tecidual
10.
Laryngoscope ; 132(7): 1356-1363, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319583

RESUMO

OBJECTIVES/HYPOTHESIS: Subglottic stenosis (SGS) results from dysregulated extracellular matrix deposition by laryngotracheal fibroblasts causing scar tissue formation following intubation. Recent work has highlighted a relationship between this inflammatory state and imbalances in the upper airway microbiome. Herein, we engineer novel drug-eluting endotracheal (ET) tubes to deliver a model antimicrobial peptide Lasioglossin-III (Lasio) for the local modulation of the microbiome during intubation. STUDY DESIGN: Controlled in vitro study. METHODS: ET tubes were coated with a water-in-oil (w/o) emulsion of Lasio in poly(d,l-lactide-co-glycolide) (PLGA) by dipping thrice. Peptide release was quantified over 2 weeks via fluorometric peptide assays. The antibacterial activity was tested against airway microbes (Staphylococcus epidermidis, Streptococcus pneumoniae, and pooled human microbiome samples) by placing Lasio/PLGA-coated tubes and appropriate controls in 48 well plates with diluted bacteria. Bacterial inhibition and tube adhesion were tested by measuring optical density and colony formation after tube culture, respectively. Biocompatibility was tested against laryngotracheal fibroblasts and lung epithelial cells. RESULTS: We achieved a homogeneous coating of ET tubes with Lasio in a PLGA matrix that yields a prolonged, linear release over 1 week (typical timeframe before the ET tube is changed). We observed significant antibacterial activity against S. epidermidis, S. pneumoniae, and human microbiome samples, and prevention of bacterial adherence to the tube. Additionally, the released Lasio did not cause any cytotoxicity toward laryngotracheal fibroblasts or lung epithelial cells in vitro. CONCLUSION: Overall, we demonstrate the design of an effective-eluting ET tube to modulate upper-airway bacterial infections during intubation which could be deployed to help prevent SGS. LEVEL OF EVIDENCE: NA Laryngoscope, 132:1356-1363, 2022.


Assuntos
Laringoestenose , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Constrição Patológica/complicações , Humanos , Inflamação , Intubação Intratraqueal/efeitos adversos , Laringoestenose/etiologia , Laringoestenose/prevenção & controle
11.
Methods Mol Biol ; 2373: 267-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34520018

RESUMO

Interface tissues are functionally graded tissues characterized by a complex layered structure, which therefore present a great challenge to be reproduced and cultured in vitro. Here, we describe the design and operation of a 3D printed dual-chamber bioreactor as a culturing system for biphasic native or engineered osteochondral tissues. The bioreactor is designed to potentially accommodate a variety of interface tissues and enables the precise study of tissue crosstalk by creating two separate microenvironments while maintaining the tissue compartments in direct contact.


Assuntos
Engenharia Tecidual , Reatores Biológicos , Cartilagem , Tecidos Suporte
12.
Biomaterials ; 272: 120773, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33798958

RESUMO

The generation of engineered models of the osteochondral complex to study its pathologies and develop possible treatments is hindered by the distinctly different properties of articular cartilage and subchondral bone, with the latter characterized by vascularization. In vitro models of the osteochondral complex have been mainly engineered as biphasic constructs containing just cartilage and bone cells, a condition very dissimilar from the in vivo environment. The different cellular components of the osteochondral complex are governed by interacting biochemical signaling; hence, to study the crosstalk among chondrocytes, osteoblasts, and endothelial cells, we have developed a novel triphasic model of the osteochondral tissue interface. Wet-spun poly(ε-caprolactone) (PCL) and PCL/hydroxyapatite (HA) scaffolds in combination with a methacrylated gelatin (gelMA) hydrogel were used as the polymeric backbone of the constructs. The scaffold components were engineered with human bone marrow derived mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs), and differentiated using a dual chamber microphysiological system (MPS) bioreactor that allows the simultaneous, separate flow of media of different compositions for induced differentiation of each compartment towards a cartilaginous or osseous lineage. Within the engineered Microphysiological Vascularized Osteochondral System, hMSCs showed spatially distinct chondrogenic and osteogenic markers in terms of histology and gene expression. HUVECs formed a stable capillary-like network in the engineered bone compartment and enhanced both chondrogenic and osteogenic differentiation of hMSCs, resulting in the generation of an in vitro system that mimics a vascularized osteochondral interface tissue.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Condrogênese , Células Endoteliais , Humanos , Engenharia Tecidual , Tecidos Suporte
13.
Cancers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807867

RESUMO

Chimeric antigen receptor (CAR) T cell-based therapies have shown tremendous advancement in clinical and pre-clinical studies for the treatment of hematological malignancies, such as the refractory of pre-B cell acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and large B cell lymphoma (LBCL). However, CAR T cell therapy for solid tumors has not been successful clinically. Although, some research efforts, such as combining CARs with immune checkpoint inhibitor-based therapy, have been used to expand the application of CAR T cells for the treatment of solid tumors. Importantly, further understanding of the coordination of nutrient and energy supplies needed for CAR T cell expansion and function, especially in the tumor microenvironment (TME), is greatly needed. In addition to CAR T cells, there is great interest in utilizing other types of CAR immune cells, such as CAR NK and CAR macrophages that can infiltrate solid tumors. However, the metabolic competition in the TME between cancer cells and immune cells remains a challenge. Bioengineering technologies, such as metabolic engineering, can make a substantial contribution when developing CAR cells to have an ability to overcome nutrient-paucity in the solid TME. This review introduces technologies that have been used to generate metabolically fit CAR-immune cells as a treatment for hematological malignancies and solid tumors, and briefly discusses the challenges to treat solid tumors with CAR-immune cells.

14.
Adv Drug Deliv Rev ; 174: 168-189, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33845038

RESUMO

Pediatric upper airway disorders are frequently life-threatening and require precise assessment and intervention. Targeting these pathologies remains a challenge for clinicians due to the high complexity of pediatric upper airway anatomy and numerous potential etiologies; the most common treatments include systemic delivery of high dose steroids and antibiotics or complex and invasive surgeries. Furthermore, the majority of innovative airway management technologies are only designed and tested for adults, limiting their widespread implementation in the pediatric population. Here, we provide a comprehensive review of the most recent challenges of managing common pediatric upper airway disorders, describe the limitations of current clinical treatments, and elaborate on how to circumvent those limitations via local controlled drug delivery. Furthermore, we propose future advancements in the field of drug-eluting technologies to improve pediatric upper airway management outcomes.


Assuntos
Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Doenças Respiratórias/tratamento farmacológico , Fatores Etários , Animais , Antibacterianos/administração & dosagem , Criança , Glucocorticoides/administração & dosagem , Humanos , Preparações Farmacêuticas/metabolismo , Tecnologia Farmacêutica/métodos
15.
Drug Deliv Transl Res ; 11(3): 1144-1155, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32783154

RESUMO

Generating formulations for the delivery of a mixture of natural compounds extracted from natural sources is a challenge because of unknown active and inactive ingredients and possible interactions between them. As one example, natural cranberry extracts have been proposed for the prevention of biofilm formation on dental pellicle or teeth. However, such extracts may contain phenolic acids, flavonol glycosides along with other constituents like coumaroyl iridoid glycosides, flavonoids, alpha-linolenic acid, n-6 (or n-3) fatty acids, and crude fiber. Due to the presence of a variety of compounds, determining which molecules (and how many molecules) are essential for preventing biofilm growth is nontrivial to ascertain. Therefore, a formulation that could contain natural, unrefined, cranberry extract (with all its constituent compounds) at high loading would be ideal. Accordingly, we have generated several candidate formulations including poly(lactic-co-glycolic) acid (PLGA)-based microencapsulation of cranberry extract (CE15) as well as formulations including stearic acid along with polyvinylpyrrolidone (PVP) or Ethyl lauroyl arginate (LAE) complexed with cranberry extracts (CE15). We found that stearic acid in combination with PVP or LAE as excipients led to higher loading of the active and inactive compounds in CE15 as compared with a PLGA microencapsulation and also sustained release of CE15 in a tunable manner. Using this method, we have been able to generate two successful formulations (one preventative based, one treatment based) that effectively inhibit biofilm growth when incubated with saliva. In addition to cranberry extract, this technique could also be a promising candidate for other natural extracts to form controlled release systems.Graphical abstract.


Assuntos
Vaccinium macrocarpon , Biofilmes , Extratos Vegetais/farmacologia
17.
Drug Deliv Transl Res ; 10(3): 661-677, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32077052

RESUMO

Gene therapy is a powerful tool against genetic disorders and cancer, targeting the source of the disease rather than just treating the symptoms. While much of the initial success of gene delivery relied on viral vectors, non-viral vectors are emerging as promising gene delivery systems for efficacious treatment with decreased toxicity concerns. However, the delivery of genetic material is still challenging, and there is a need for vectors with enhanced targeting, reduced toxicity, and controlled release. In this article, we highlight current work in gene therapy which utilizes the cyclic oligosaccharide molecule cyclodextrin (CD). With a number of unique abilities, such as hosting small molecule drugs, acting as a linker or modular component, reducing immunogenicity, and disrupting membranes, CD is a valuable constituent in many delivery systems. These carriers also demonstrate great promise in combination therapies, due to the ease of assembling macromolecular structures and wide variety of chemical derivatives, which allow for customizable delivery systems and co-delivery of therapeutics. The use of combination and personalized therapies can result in improved patient health-modular systems, such as those which incorporate CD, are more conducive to these therapy types. Graphical abstract.


Assuntos
Ciclodextrinas/química , Terapia Genética/métodos , Animais , Terapia Combinada , Sistemas de Liberação de Medicamentos , Humanos , Medicina de Precisão
18.
Biofabrication ; 12(2): 025013, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31929117

RESUMO

Bone is a highly vascularized tissue, in which vascularization and mineralization are concurrent processes during skeletal development. Indeed, both components should be included in any reliable and adherent in vitro model platform for the study of bone physiology and pathogenesis of skeletal disorders. To this end, we developed an in vitro vascularized bone model, using a gelatin-nanohydroxyapatite (gel-nHA) three-dimensional (3D) bioprinted scaffold. First, we seeded human mesenchymal stem cells (hMSCs) on the scaffold, which underwent osteogenic differentiation for 2 weeks. Then, we included lentiviral-GFP transfected human umbilical vein endothelial cells (HUVECs) within the 3D bioprinted scaffold macropores to form a capillary-like network during 2 more weeks of culture. We tested three experimental conditions: condition 1, bone constructs with HUVECs cultured in 1:1 osteogenic medium (OM): endothelial medium (EM); condition 2, bone constructs without HUVECs cultured in 1:1 OM:EM; condition 3: bone construct with HUVECs cultured in 1:1 growth medium:EM. All samples resulted in engineered bone matrix. In conditions 1 and 3, HUVECs formed tubular structures within the bone constructs, with the assembly of a complex capillary-like network visible by fluorescence microscopy in the live tissue and histology. CD31 immunostaining confirmed significant vascular lumen formation. Quantitative real-time PCR was used to quantify osteogenic differentiation and endothelial response. Alkaline phosphatase and runt-related transcription factor 2 upregulation confirmed early osteogenic commitment of hMSCs. Even when OM was removed under condition 3, we observed clear osteogenesis, which was notably accompanied by upregulation of osteopontin, vascular endothelial growth factor, and collagen type I. These findings indicate that we have successfully realized a bone model with robust vascularization in just 4 weeks of culture and we highlighted how the inclusion of endothelial cells more realistically supports osteogenesis. The approach reported here resulted in a biologically inspired in vitro model of bone vascularization, simulating de novo morphogenesis of capillary vessels occurring during tissue development.


Assuntos
Osso e Ossos/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Engenharia Tecidual/métodos , Fosfatase Alcalina/metabolismo , Bioimpressão , Desenvolvimento Ósseo , Osso e Ossos/metabolismo , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo I/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Impressão Tridimensional , Tecidos Suporte/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Connect Tissue Res ; 61(2): 117-136, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31524001

RESUMO

Airway and other head and neck disorders affect hundreds of thousands of patients each year and most require surgical intervention. Among these, congenital deformity that affects newborns is particularly serious and can be life-threatening. In these cases, reconstructive surgery is resolutive but bears significant limitations, including the donor site morbidity and limited available tissue. In this context, tissue engineering represents a promising alternative approach for the surgical treatment of otolaryngologic disorders. In particular, 3D printing coupled with advanced imaging technologies offers the unique opportunity to reproduce the complex anatomy of native ear, nose, and throat, with its import in terms of functionality as well as aesthetics and the associated patient well-being. In this review, we provide a general overview of the main ear, nose and throat disorders and focus on the most recent scientific literature on 3D printing and bioprinting for their treatment.


Assuntos
Bioimpressão , Otolaringologia , Procedimentos de Cirurgia Plástica , Impressão Tridimensional , Engenharia Tecidual , Humanos
20.
Biomacromolecules ; 21(2): 319-327, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31808680

RESUMO

Developing green and nontoxic biomaterials, derived from renewable sources and processable through 3D bioprinting technologies, is an emerging challenge of sustainable tissue engineering. Here, pectin from citrus peels was cross-linked for the first time with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) through a one-pot procedure. Freeze-dried porous pectin sponges, with tunable properties in terms of porosity, water uptake, and compressive modulus, were obtained by controlling GPTMS content. Cell experiments showed that GPTMS did not affect the cytocompatibility of pectin. The addition of GPTMS improved the printability of pectin due to an increase of viscosity and yield stress. Three-dimensional woodpile and complex anatomical-shaped scaffolds with interconnected micro- and macropores were, therefore, bioprinted without the use of any additional support material. These results show the great potential of using pectin cross-linked with GPTMS as biomaterial ink to fabricate patient-specific scaffolds, which could be used to promote tissue regeneration in vivo.


Assuntos
Bioimpressão/métodos , Compostos de Epóxi/química , Pectinas/química , Silanos/química , Tecidos Suporte/química , Materiais Biocompatíveis/química , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Orelha , Liofilização , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Nariz , Porosidade , Reologia , Engenharia Tecidual/métodos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...